1D Metal Wires at Surfaces: Preparation, Phase Transitions, and Ultrafast non-Equilibrium Dynamics

Michael Horn von Hoegen

Experimental Physics University of Duisburg-Essen Germany

Download of presentation available at: https://www.uni-due.de/ag-hvh/

Frühjahrstagung der DPG – Berlin 2015

1-dim Atom Wires on Si – why?

Dimensionality drastically changes properties of matter

- **3D** Simple bulk (Pauli: "God made the bulk ...")
- **2D** Surfaces are complicated we struggle since centuries (Pauli: " ...the surface was invented by the devil")
- **0D** Quantum dots are simple again (used in applications)

1D ?

UNIVERSITÄT

DUISBURG

We expect new and fascinating properties:

- Anisotropic conductivity
- 1-dim transport: Tomanaga Luttinger liquid, decouple charge and spin
- Peierls instability of atom chain
- => Playground for physicists

UNIVERSITÄT

1-dim Atom Wires on Si

• Si(557) – Pb:

Switching Between One and Two Dimensions: Conductivity of Pb-Induced Chain Structures onSi(557)
C. Tegenkamp, Z. Kallassy, H. Pfnür, H.-L. Günter, V. Zielasek, and M. Henzler, Phys. Rev. Lett. 95, 176804 (2005)

Coupled Pb Chains on Si(557): Origin of One-Dimensional Conductance

C. Tegenkamp, T. Ohta, J. McChesney, H. Dil, E. Rotenberg, H. Pfnür, and K. Horn, Phys. Rev. Lett. **100** 076802 (2008)

Conductance transition and interwire ordering of Pb
 nanowires on Si(557)

H. Morikawa, K.S. Kim, Y. Kitaoka, T. Hirahara, S. Hasegawa, and H.W. Yeom, Phys. Rev. B **82**, 045423 (2010)

• Plasmons in Pb nanowire arrays on Si(557): Between one and two dimensions

T. Block, C. Tegenkamp, J. Baringhaus, H. Pfnür, and T. Inaoka, Phys. Rev. B **84** 205402 (2011)

Fermi nesting between atomic wires with strong spin-orbit coupling

C. Tegenkamp, D. Lükermann, H. Pfnür, B. Slomski, G. Landolt, J. H. Dil, Phys. Rev. Lett. **109**, 266401 (2012)

• Si(557) – Ag:

 One-dimensional collective excitations in Ag atomic wires grown on Si(557)

U Krieg, C Brand, C Tegenkamp and H Pfnür J. Phys.: Condens. Matter **25**, 014013 (2012)

- Si(557) Mg:
 - Quintuple-period Si atomic wires with alternative double and triple modulations by metal: Mg/Si(557) B.G. Shin, M.K. Kim, J.H. Lee, D.-H. Oh, I. Song, S.H. Woob, C.-Y. Park, J.R. Ahn, Surf. Sci. 606, 57 (2012)

UNIVERSITÄT DUISBURG ESSEN

1-dim Atom Wires on Si

• Si(553) – Au:

- Intrinsic magnetism at silicon surfaces Steven C. Erwin & F.J. Himpsel Nature Communications 1, 58 (2010)
- Spin-split silicon states at step edges of Si(553)-Au. K. Biedermann et al., Phys. Rev. B 85, 245413 (2012).
- Spectroscopic evidence for spin-polarized edge states in graphitic Si nanowires.
 P.C. Snijders et al. New J. Phys. 14, 103004 (2012).
- Evidence for long-range spin order instead of a Peierls transition in Si(553)-Au chains J. Aulbach, J. Schäfer, S.C. Erwin, S. Meyer, C. Loho, J. Settelein, and R. Claessen, Phys. Rev. Lett. **111**, 137203 (2013)
- Si(553) In:
 - Indium-induced triple-period atomic wires on a vicinal Si(111) surface: In/Si(557)
 I Song, D-H Oh, J H Nam, M K Kim, C Jeon, C-Y Park, S H Woo

and J R Ahn, New J. Phys. **11** (2009) 063034,

• Si(111)-Au (5x2)

5-nm

UNIVERSITÄT DUISBURG ESSEN

1-dim Atom Wires on Ge

• Ge(001) – Au:

- Scanning tunneling microscopy study of self-organized Au atomic chain growth on Ge(001)
 J. Wang, M. Li, E. I. Altman, Phys. Rev. B 70, 233312 (2004)
- New Model System for a One-Dimensional Electron Liquid: Self-Organized Atomic Gold Chains on Ge(001) J. Schäfer, C. Blumenstein, S. Meyer, M. Wisniewski, and R. Claessen, Phys. Rev. Lett. 101, 236802 (2008)
- First-principles studies of Au-induced nanowires on Ge(001) S. Sauer, F. Fuchs, F. Bechstedt, C. Blumenstein, J. Schäfer, Phys. Rev. B 81, 075412 (2010)
- Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid

C. Blumenstein, J. Schäfer, S. Mietke, S. Meyer, A. Dollinger, M. Lochner, X. Y. Cui, L. Patthey, R. Matzdorf, R. Claessen, Nature Physics **7**, 776 (2011)

• Ge(001) – Pt:

 Quantum Confinement between Self-Organized Pt Nanowires on Ge(001)
 N. Oncel, A. van Houselt, J. Huijben, A.-S. Hallbäck,

Phys. Rev. Lett. 95, 116801 (2005)

 Spatial Mapping of the Electronic States of a One-Dimensional System

A. van Houselt, N. Oncel, B. Poelsema, H.J.W. Zandvliet, Nano Lett. **6**, 1439 (2006)

Playing Pinball with Atoms
 A. Saedi, A. van Houselt, R. van Gastel, B. Poelsema, H.J.W.
 Zandvliet, Nano Lett. 9, 1733 (2009)

UNIVERSITÄT D U I S B U R G E S S E N

Si(111)-In(8x2)

Adsorbat System: Si(111)-In

Superstructures of submonolayer indium films on silicon (111)7 surfaces

M. Kawaji, S. Baba, and A. Kinbara

UNIVERSITÄT

D U I S B U R G E S S E N

Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received 31 October 1978; accepted for publication 22 March 1979)

Superstructures of submonolayer films of indium on a clean silicon (111)7 surface have been investigated using techniques of molecular-beam deposition and reflection high-energy electron diffraction. A two-dimensional phase diagram including four superstructures, 7, $(3)^{1/2}$, $(31)^{1/2}$, and 4×1 , is presented at substrate temperatures between 300 and 600 °C.

FIG. 5. Phase diagram for the superstructures of two-dimensional submonolayer film of In on Si (111)7. The dots are experimental phase transition points.

M. Kawaji, S. Baba, and A. Kinbara, Appl. Phys. Lett. 34, 748 (1979)

Adsorbatsystem: Si(111)-In

- precision-oriented (±0.1°) Si(111) sample (phosphorus doped, 0.8 Ωcm)
- Si-substrate cleaned by flash-anneal cycles up to 1200°C
- clean Si(111) surface repeatedly checked by (7x7) superstructure spots in LEED
- Indium-deposition at elevated Si substrate temperatures

UNIVERSITÄT

D U I S B U R G E S S E N

- constant deposition rate controlled by quarz microbalance
- SPA-LEED pattern taken at 130 eV directly after rapid cooling down to ~ 80 K

In($\sqrt{3x}\sqrt{3}$) absorbed at ~ 450 °C and annealed for 180 s at ~ 600 °C

In($\sqrt{31x}\sqrt{31}$) absorbed ~ at 450 °C and annealed for 60 s at ~ 600 °C

In($\sqrt{3x}\sqrt{3}$)/($\sqrt{31x}\sqrt{31}$)/(8x2) absorbed at ~ 450 °C, annealed for 180 s at ~ 450 °C

In(8x2) absorbed at ~ 500 °C and annealed for 60 s at ~ 500 °C

In(4x1) heated up (8x2) structure

UNIVERSITÄT DUISBURG Si(111)- $ln(8x2) \leftrightarrow (4x1)$

high temperature low temperature

S. J. Park, **H.W. Yeom**, S. H. Min, D.H. Park, and I.-W. Lyo, Phys. Rev. Lett. **93**, 106402 (2004)

UNIVERSITÄT DUISBURG Anisotropic Conductivity

Si(111)-In (4x1) at 300 K

 Conductivity parallel to the wires
 60 x larger than perpendicular

T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, Phys. Rev. Lett. **91**, 036805 (2003)

Phasetransition of In/Si(111)

H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S. D. Kevan, T. Ohta, T. Nagao, S. Hasegawa, Phys. Rev. Lett. **82**, 4898 (1999), S.V. Ryjkov, et al., Surf. Sci. **488**, 15 (2001).

UNIVERSITÄT

DUISBURG

G. Falkenberg, R.L. Johnson, R. Feidenhans'l et al., Phys. Rev. B **59** 12228 (1999)

C. Kumpf, O. Bunk, J.H. Zeysing, Y. Su, M. Nielsen, R.L. Johnson, R. Feidenhans'l, K. Bechgaard, Phys. Rev. Lett. **85**, 4916 (2000)

Peierls like Mechanism

UNIVERSITÄT

D U I S B U R G E S S E N

(8x2)

140 K

120 eV

Robust Hysteresis upon T-cycling

3·10⁵

heating

(8×2) spot

Phase transition temperature $T_{c} = 130 \text{ K}$

UNIVERSITÄT

DUISBURG

F. Klasing, T. Frigge, B. Hafke, S. Wall, B. Krenzer, A. Hanisch-Blicharski, and M. Horn-von Hoegen Phys. Rev. B 89, 121107(R) (2014)

DUISBURG 1st Order Transition

UNIVERSITÄT

Figure 1.17: First order free energy $f(\phi)$ and $\phi(T)$. Left: Free energy f as function of the order-parameter ϕ . The red curves show the free energy for the 3 characteristic temperatures, i.e. T_C , T_i and T_{ii} . Between the solid red curves, i.e. between $T = T_C$ and $T = T_{ii}$, two stable states exist one of them being meta-stable at a time. The dashed red curve marks the temperature where both states are equal in potential. Right: Order-parameter ϕ as function of the temperature T. Stable states, i.e. thermal equilibrium states or the global free energy minimum, are marked in red whereas meta-stable states are colored green. The shaded temperature range corresponds to the shaded area on the left hand side.

Robust Hysteresis upon T-cycling

3·10⁵

2·10⁵

1.10

heating

(8×2) spot

WH

 T_c^+

T_c

cooling

- Phase transition temperature $T_{c} = 130 \text{ K}$
- Hysteresis width $W_{H} = 9 K$

UNIVERSITÄT

DUISBURG

Proof of 1st order transition => Peierls like distortion [*] => **not** order-disorder transition

UNIVERSITÄT DUISBURG What else can be done?

So far equilibrium thermodynamics...

Now:

Non-equilibrum structrual dynamics of this phase transition upon impulsive excitation

We will

- have (analogon of) undercoolded bottles of champain on a Si surface
- will play domino day with atoms
- and answer the question how fast atoms move

We need, however, diffraction!

TR-RHEED in Pump-Probe Setup

Diffraction Pattern Atd

41

Ultrafast time resolved femtosecond diffraction at surfaces in Reflection High Energy Electron Diffraction (RHEED) geometry

Laser pump & electron probe

UNIVERSITÄT

DUISBURG

 Re-do the experiment in stroboscopic fashion many many times

DUISBURG Surface Sensitivity with Electrons

Electron scattering cross section

- $10^4...10^6$ larger than x-ray
 - dominant multiple scattering
 no simple IV-analysis

=> LEED

- extrem surface sensitivity
- normal incidence
- no distortion of pattern
- miniaturize setup to avoid huge temporal broadening of nanoseconds Science 345, 200 (2014) M.Gulde,S. Schäfer, C. Ropers

DUISBURG Surface Sensitivity with Electrons

Electron scattering cross section

$10^4...10^6$ larger than x-ray

 dominant multiple scattering
 no simple IV-analysis

=> LEED

- extrem surface sensitivity
- normal incidence
- no distortion of pattern
- miniaturize setup to avoid huge temporal broadening of nanoseconds

=> RHEED

- grazing incidence
- distortion of pattern
- velocity mismatch degrade temporal resolution

Pulsed RHEED Electron Gun

UNIVERSITÄT

DUISBURG

A. Janzen, M. Horn von Hoegen et al., Rev. Sci. Inst. 78, 013906 (2007)

DUISBURG Surface Sensitivity with Electrons

Electron diffraction

- backilluminated 10 nm Au photocathod
- fast electrons 5 30 keV and narrow initial energy spread ∆E = 0.1 eV minimize temporal broadening of fs e-pulses

RHEED

- grazing incidence 2°- 6° to ensure surface sensitivity
- vertical momentum transfer ∆k_⊥ = 4 - 10 Å⁻¹
 => huge signal in Debye Waller
- reversible surface / film system
 => no radiation damage!
 More than 10⁷ laserpulses / experiment
- velocity mismatch limits temporal resolution to 20 ps @ 30 keV, (in the meantime solved that problem!)

- A. Hanisch-Blicharski, A. Janzen, B. Krenzer, S. Wall, F. Klasing, A. Kalus,
- T. Frigge, M. Kammler, M. Horn-von Hoegen, Ultramicroscopy 127, 2 (2013)

Experimental Setup DUISBURG

fs Laser Pulses

UNIVERSITÄT

SSEN

- Ti-Saphire amplifier system
- λ = 800 nm, ħ ω = 1.55 eV
- 80 fs, 1 mJ per pulse
- Fluence of up to 10 mJ/cm², i.e., 10¹² W/cm²
- 5 kHz repetition rate

UHV-System

- p < 1 x 10⁻¹⁰ mbar
- Sample 20 K 1200 °C
- In-situ deposition of Bi, Pb, In ...

e-Diffraction

- RHEED 5 30 keV
- Image amplification by MCP
- Cooled 16 bit CCD camera

DUISBURG Movie of transition

′<mark>0.0</mark>`

(8x2)

(4x1)

-6 ps

Impulsive excitation through fs-laserpulse

- Base temperature 20 K << T_c = 125 K
- Φ = 2.1 mJ/cm²

- E = 30 kV
- magnetic lense
- transversal coherence length of 40 nm
- 2°- 4° grazing incidence

UNIVERSITÄT Movie of transition – gains & losses DUISBURG ESSEN Õ ထ (4x1) Intensity gain (8x2) Intensity loss

TR-RHEED: In/Si(111)

Displacive structural phase transition

UNIVERSITÄT

DUISBURG

- Surface at 20 K well below T_c = 130 K
- Confirmed that almost no heating of surface $\Delta T < 30$ K
- Photo induced, electronic (and not a thermal) excitation of phase transition

Electronic Excitation

Electronic excitation:

UNIVERSITÄT

DUISBURG

- Laser excited electron-hole pairs
- Relaxation of hot carriers to top and bottom of bands
- Depopulation of states responsible for Peierls transition
- Lifting of (8x2) Peierls distortion, closing of bandgap, melting of CDW, and transition to (4x1) excited state

- Life time of electronic excitations: few 10 to some 100 fs
- Here: hundreds of ps

W.G. Schmidt, S. Sanna et al., University Paderborn

DUISBURG ESSEN SEN

Trapped in a supercooled metastable surface phase:

- 40 meV barrier hinders recovery of low temperature (8x2) groundstate
- State far away from equilibrium unaccessible under equilibrium conditions

Hidden State of Matter !

DUISBURG Relaxation Dynamics

Recovery of groundstate sensitive to

- Adsorption from residual gas in UHV, most likely H₂0 acting as seeds
- 1-dim. atomic wire system: expect an (adsorption time)⁻¹ behavior

Relaxation Dynamics

Recovery of groundstate sensitive to

UNIVERSITÄT

DUIS

- Adsorption from residual gas in UHV, most likely H₂0 acting as seeds
- 1-dim. atomic wire system: expect an (adsorption time)⁻¹ behavior

DUISBURG Relaxation Dynamics

Relaxation Dynamics DUISBURG SSEN

Adsorbates trigger phase transition

- Adsorbates act as seed for recovery into (8x2) groundstate
- Recovery front propagates only 1-dimensionally:
 - => constant velocity
- Take density of adsorbates from literature ^{1),2)} and correlate with change of T_c :
- velocity of phase front $\approx 100 \text{ m/s}$

1) G. Lee, S.-Y. Yu, H. Shim, W. Lee, J.-Y. Koo, Phys. Rev. B 80, 075411 (2009)

2) T. Shibasaki et al.,

UNIVERSITÄT

Phys. Rev. B 81, 035314 (2010)

S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W. Gero Schmidt, M. Horn-von Hoegen, Phys. Rev. Lett. 109, 186101 (2012) & Phys. Rev. Lett. 111, 149602 (2013)

I_{ad}

DUISBURG SSEN SSEN

Supercooled metastable surface phase:

- 40 meV barrier hinders recovery of low temperature (8x2) groundstate
- State far away from equilibrium unaccessible under equilibrium

Adsorbates trigger phase transition

- Pre-existing adsorbates act as seed for recovery into (8x2) groundstate
- Recovery front propagates only 1-dimensionally @ 100 m/s
- Like a row of falling dominos ...

S. Wall, B. Krenzer, S. Wippermann, S. Sanna, F. Klasing, A. Hanisch-Blicharski, M. Kammler, W. Gero Schmidt, M. Horn-von Hoegen, Phys. Rev. Lett. **109**, 186101 (2012) & Phys. Rev. Lett. **111**, 149602 (2013)

Transient Spot Profile Analysis

Phase transition is incomplete due to weak laser excitation

Only ~50% of (8x2) is converted into (4x1)

UNIVERSITÄT

DUISBURG

 Recovery time independent on adsorbate coverage and always 50-100 ps

Transient Spot Profile Analysis

Pattern of small (8x2) and (4x1) domains on surface

- Remnant (8x2) groundstate expands linear in time – no seeds necessary
- $L_{8x2} = 2 \cdot v_{8x2} \cdot t$

UNIVERSITÄT

DUISBURG

 (8x2) regions act as slit for electron diffraction
 => broadening of (8x2) spots

 (8×2) (4x1) Adsorbates

Transient Spot Profile Analysis DUISBURG

Pattern of small (8x2) and (4x1) domains on surface

UNIVERSITÄT

SSEN

Remnant (8x2) groundstate expands linear in tim

Transient Spot Profile Analysis

UNIVERSITÄT

DUISBURG

DUISBURG Recovery Dynamics

DUISBURG Initial Structural Dynamics.

UNIVERSITÄT

Tilted Pulse Fronts

UNIVERSITÄT

DUISBURG

M. Horn-von Hoegen, EPJ Web Conf. **41**, 10016 (2013)

UNIVERSITÄT DUISBURG ESSEN Ultrafast fs-RHEED: Advanced Setup

DUISBURG Strongly driven excitation

T. Frigge, B. Krenzer, B. Hafke, C. Streubühr, P. Zhou, M. Ligges, U. Bovensiepen, D. von der Linde, M. Horn-von Hoegen (yet unpublished)

UNIVERSITÄT **Strongly driven excitation** DUISBURG Е E E E 8x2 initial electronic ground state metastable excitation dynamics phase kbT << Ebarrier $\Delta E = -100 \text{ meV}$ $hv >> \Delta E$

Potential energy landscape changes upon electronic excitation:

- Accelerated displacive transition from (8x2) ground state to (4x1) excited state in 350 fs – "slow" structural transition!
- Transition in ¼ period of the characteristic shear and rotational soft phonon modes

UNIVERSITÄT DUISBURG ESSEN

TR-RHEED Team:

Andreas Janzen, Boris Krenzer, Anja Hanisch-Blicharski, Simone Wall, Annika Kalus, Paul Schneider, Tobias Pelka, Friedrich Klasing, Martin Kammler,
Tim Frigge, Verena Tinnemann, Bernd Hafke, Tobias Witte

Laser Team:

Carla Streubühr, Ping Zhou, Manuel Ligges, Dietrich von der Linde, Uwe Bovensiepen

Theory Team:

Wolf Gero Schmidt¹, Simone Sanna¹, Stefan Wippermann¹², Andreas Lücke¹
1) University of Paderborn
2) present adress: MPI Eisenforschung, Düsseldorf

Financial Support:

State of NRW, DFG, SFB616

Summary - Atomic Wires

Si(111)/In (8x2) \leftrightarrow (4x1)

Simple sample preparation

Peierls instabililty

UNIVERSITÄT

D U I S B U R G E S S E N

1st order phase transition at 130 K

- Ultrafast electronic excitation of phase transition in 350 fs
- Formation of supercooled, metastable surface phase
- Pre-exisiting defects trigger the 1-dim propagating recovery front, which propagates at 100m/s

Frühjahrstagung der DPG – Berlin 2015

Delay (ps)