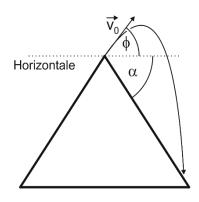


Prof. Dr. M. Horn-von Hoegen Fakultät für Physik

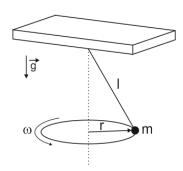
Universität Duisburg-Essen

Übungen zu "Grundlagen der Physik I"


Hausübung 4

WiSe 2018/19

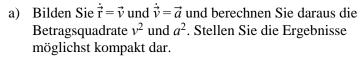
Abgabe bis 05. November 2018, 12:00 Uhr Abgabebox im Kern MF, 2. Etage

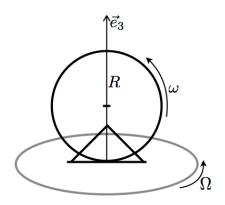

<u>Aufgabe 1:</u> Schräger Wurf von Berg

Von der Spitze eines kegelförmigen Berges aus, dessen Flanken im Winkel α gegen die Horizontale abfallen, wird ein Ball mit der Geschwindigkeit v_0 im Winkel ϕ gegen die Horizontale hochgeworfen. Wie ist der Abwurfwinkel ϕ zu wählen, damit der Ball möglichst lange in der Luft bleibt?

Aufgabe 2: Zentrifuge

- a) Eine Zentrifuge dreht sich mit 12000 U/min. Berechnen Sie die Zentripetalbeschleunigung, der ein Reagenzglas im Abstand von 15 cm von der Rotationsachse standhalten muss.
- b) Bestimmen Sie die zur Sonne gerichtete Beschleunigung der Erde! Nehmen Sie dazu an, dass die Umlaufbahn der Erde um die Sonne kreisförmig ist.
- c) Ein punktförmiger Körper der Masse m, der an einem masselosen Faden der Länge l im Schwerefeld aufgehängt ist, umlaufe die Vertikale durch den Aufhängepunkt mit der Winkelgeschwindigkeit ω auf einem Kreis mit dem Radius r. Berechnen Sie r als Funktion von ω und stellen Sie das Ergebnis qualitativ graphisch dar.




<u>Aufgabe 3:</u> Karussell

Der Fahrgast in der Gondel eines auf einem Karussell (Ω) montierten Riesenrads (R, ω) folgt einer Raumkurve:

$$\vec{r}(t) = R\vec{e}_3 + R(\sin(\omega t)\vec{f}(t) - \cos(\omega t)\vec{e}_3)$$

Hier legen \vec{e}_3 und $\vec{f}(t) = (\cos(\Omega t), \sin(\Omega t), 0)$ die momentane Riesenradebene fest.

- b) Geben Sie die maximal erreichte Geschwindigkeit an. Wann und wo (Ortsvektor) wird diese erreicht?
- c) Geben Sie die maximal erreichte Beschleunigung an. Wo und unter welchen Umständen (Fallunterscheidung) wird die maximale Beschleunigung erreicht?

