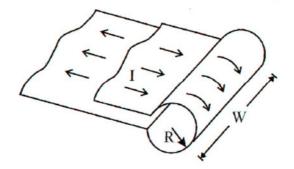


Übungen zu Grundlagen der Physik 2

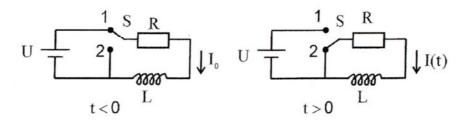
Blatt 11


SS 2015

Abgabe bis 29. Juni 2015, 12:00 Uhr Abgabebox im Kern MF, 2. Etage

Aufgabe 1

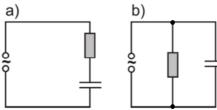
Ein breiter Kupferstreifen der Breite W ist zu einem Rohr mit dem Radius $R \ll W$ und zwei zusätzlichen Platten mit engem Luftspalt gebogen. Ein gleichmäßig verteilter Strom I fließt durch den Kupferstreifen.

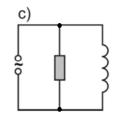

- a) Wie groß ist das Magnetfeld B innerhalb des Rohres?
- b) Wie groß ist die Induktivität L des Kupferstreifens, ohne die zwei zusätzlichen Platten zu berücksichtigen?

Aufgabe 2

An einer Batterie der Spannung U=6 V werden über einen Schalter S ein Widerstand R=3 Ω und eine Spule mit der Induktivität L=0.6 H angeschlossen. Anfangs (t<0) hat S die Stellung 1 und es fließt ein konstanter Strom I_0 . Zum Zeitpunkt t_0 wird S in die Stellung 2 gebracht.

- a) Berechnen Sie I(t). Nach welcher Zeit τ klingt I(t) auf das 1/e-fache seines Anfangswertes ab? Plotten Sie I(t) und U(t).
- b) Berechnen Sie für einen beliebigen Zeitpunkt $t_1>0$ die im Magnetfeld gespeicherte Energie $W_{\rm mag}$ und die während der Zeit $0< t< t_1$ im Widerstand dissipierte Energie W_{Ω} als Funktion von $\frac{t_1}{\tau}$.




Aufgabe 3

In den drei dargestellten Schaltungen ist $R=200~\Omega$, $C=10~\mu\mathrm{F}$ und $L=0.5~\mathrm{H}$. Für die Spannung U(t) und die Stromstärke I(t) lässt sich ansetzen:

$$U(t) = U_0 \cos(\omega t + \varphi)$$

$$I(t) = I_0 \cos(\omega t)$$

mit $f = 50 \text{ Hz} \text{ und } U_0 = 340 \text{ V}.$

Berechnen Sie I_0 und φ und stellen Sie die Impedanz Z in einem Zeigerdiagramm dar!