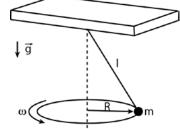


Übungen zu "Grundlagen der Physik la"


Blatt 8

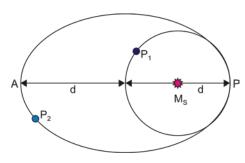
WS 2014/15

Abgabe bis Mo,8. Dezember 2014, 12:00Uhr Abgabebox im Kern MF, 2. Etage

Aufgabe 1

Ein punktförmiges Teilchen der Masse m ist an einem masselosen Faden der Länge l im Schwerefeld der Erde aufgehängt. Das Teilchen umlaufe auf einer Kreisbahn mit dem Radius R die Vertikale durch den Aufhängepunkt mit der Winkelgeschwindigkeit $\vec{\omega}$. Berechnen Sie bezüglich des Aufhängepunktes:

- a) den Drehimpuls $\vec{L}(t)$ des Teilchens und
- b) das Drehmoment $\vec{D}(t)$ der Schwerkraft auf das Teilchen.
- c) Zeigen Sie, dass die Gleichung $\vec{L}(t) = \vec{D}(t)$ erfüllt ist.


Aufgabe 2

Ein Fernsehsatellit der Masse $m=1000~{\rm kg}$ befinde sich auf einer geostationären Umlaufbahn um die Erde.

- a) Was für eine Bahnkurve durchläuft der Satellit? Berechnen Sie die Parameter r und ε dieser Bahn. Welcher Drehimpuls L und welche Gesamtenergie E sind mit dieser Bahn verbunden?
- b) Wie verändert sich die Bahnkurve, wenn bei gleichbleibender Gesamtenergie E'=E der Drehimpuls auf $L' = \frac{1}{2}L$ halbiert wird? Berechnen Sie insbesondere die zugehörigen Parameter r'_{min} , r'_{max} und ε' .
- c) Skizzieren Sie die beiden Umlaufbahnen in ein Diagramm.

Aufgabe 3

Zwei Planeten gleicher Masse bewegen sich um einen Stern mit wesentlich größerer Masse. Planet 1 bewegt sich auf einer Kreisbahn mit dem Durchmesser $d = 2.0 \cdot 10^{11}$ m; seine Umlaufdauer beträgt $T_1 = 2$ Jahre. Planet 2 bewegt sich auf einer elliptischen Bahn mit der großen Halbachse $a_2=d$. Die Bahnen haben den gemeinsamen Scheitelpunkt P.

- a) Berechnen Sie die Masse des Sterns M_S .
- b) Berechnen Sie die Umlaufdauer T_2 von Planet 2.
- c) Welcher der beiden Planeten hat die größere Gesamtenergie? (Hinweis: Betrachten Sie jeweils die Gesamtenergie in Punkt P. Die Aussage über die Gesamtenergien kann auch ohne numerische Rechnung durchgeführt werden!)
- d) Berechnen Sie das Verhältnis der Bahngeschwindigkeiten v_A und v_P von Planet 2 in den Punkten A (Aphel) und P (Perihel). Welche numerischen Werte haben v_A und v_P ?

(Hinweis: Denken Sie nicht ausschließlich an den Energieerhaltungssatz!)

Zahlen: Gravitationskonstante: $G = 6.67 \cdot 10^{-11} \text{ m}^3/(\text{kg s}^2)$, 1 Jahr = 365,25 Tage.

Aufgabe 4

Berechnen Sie die folgenden Gradienten (\vec{a} = konstanter Vektor, $\vec{r} = x \ \hat{e}_x + y \hat{e}_y + z \hat{e}_z$):

1) grad $(\vec{a} \vec{r})$

2) $grad(r^3)$

3) $grad(\vec{r})$

4) grad(1/r)

5) $grad(|\vec{r} + \vec{a}|)$ 6) $grad(1/|\vec{r} - \vec{a}|)$