Fachbereich Physik

Prof. Dr. Michael Horn-von Hoegen

Prof. Dr. Lothar Schäfer

Übungen zu den Grundlagen der Physik II

SS 2009 Übungsblatt Nr. 4

Fragen 4:

- a) Wie groß ist die Coulombkraft, mit der sich die beiden Protonen im Heliumatomkern abstoßen?
- b)Welche Beschleunigung erfährt ein Teilchen der Masse m und Ladung q, welches sich am Ort \vec{r} befindet, durch eine andere Ladung Q, welche sich wiederum am Ort \vec{R} befindet?
- c) Gegeben sei ein Vektorfeld \vec{V} mit rot $\vec{V} = \vec{e}_1$. Welchen Wert hat das Integral $\oint_C d\vec{r} \cdot \vec{V}(\vec{r})$, wobei C ein Kreis mit

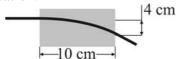
Radius R und Mittelpunkt 0 ist, der in der $\vec{e}_2 - \vec{e}_3$ Ebene liegt? Von der positiven

- \vec{e}_1 -Richtung her gesehen, wird C entgegen dem Uhrzeigersinn durchlaufen.
- d) Was ergeben die Operatoren rot grad bzw. div rot?

[4 Punkte]

Aufgabe 12:

Ein positiv geladenes Teilchen mit einer Ladung von 20 C befinde sich 20 cm von einem mit -40 C geladenen Teilchen entfernt. Bestimmen sie die elektrische Feldstärke und deren Richtung an den Punkten:


- a) P₀, genau in der Mitte zwischen den Ladungen
- b) P₁, 4 cm von der negativen Ladung entfernt auf der Verbindungslinie zwischen den Ladungen.
- c) Bestimmen sie die Anfangsbeschleunigung eines Elektrons, an den Punkten aus den Aufgaben a) und b).
- d) Bestimmen sie die elektrische Feldstärke in der Mitte des Quadrates aus Aufgabe 10 a), wenn q=1 C, $q_p=0$ C und die Seitenlänge des Quadrates a=1 m ist. [8 PUNKTE]

Aufgabe 13:

Ein Elektron mit einer kinetischen Energie von $E_{\rm kin} = 4.5 \cdot 10^{-17} \, J$ wird in einem

räumlich homogenen elektrischen Feld \vec{E} wie unten gezeigt abgelenkt. Wie stark ist das elektrische Feld und welche Richtung weist es auf?

Vernachlässigen sie die Gravitation.

[4 PUNKTE]

Aufgabe 14:

Das stationäre Strömungsfeld einer inkompressiblen Flüssigkeit in einer Röhre mit kreisförmigem Querschnitt hat die Form

$$\vec{v}(\vec{r}) = \vec{e}_1 a (R^2 - \rho^2)$$
.

- $(\vec{e}_1:$ Achsenrichtung, R: Radius des Querschnitts, a: konstant).
- a) Berechnen Sie $div(\vec{v})$ und $rot(\vec{v})$.
- b) Wegen $div(\vec{v})=0$, div rot $\equiv 0$, können Sie $\vec{v}=rot(\vec{A})$ schreiben. Berechnen Sie für das hier gegebene \vec{v} ein 'Vektorpotential' \vec{A} der Form $\vec{A}=\vec{e}_{\varphi}\,\vec{A}_{\varphi}$, das die Zusatzbedingung $div(\vec{A})=0$ erfüllt.

Bemerkung: Bei der Behandlung von Magnetfeldern wird das Vektorpotential wichtig werden. [8 PUNKTE]

Aufgabe 15:

Gegeben seien die durch Integrale definierten Funktionen

$$f_{\in}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dk e^{ikx - \epsilon|k|}, \epsilon > 0.$$

Berechnen Sie $f_{\in}(x)$ und zeigen Sie damit

$$\lim_{\epsilon \to 0} f_{\epsilon}(x) = \delta(x).$$

Skizzieren Sie $\pi \cdot f_{\epsilon}(x)$ für $\epsilon = 1$ und $\epsilon = \frac{1}{2}$ (im selben Bild!)

Hinweis:
$$\int_{-\infty}^{+\infty} dy \frac{1}{y^2 + 1} = \pi.$$

[8 PUNKTE]